مدرسان شریف ۹۳
سایت علمی دانشجویان ایران
دانـلـود مقـالات آی اس آی 
از تـمامـی پـایـگـاه های آنـلایــن، بـه سـادگـی!
یادبرگ موسسه پژوهش
در حال نمایش 1 تا 2 از مجموع 2
نمودار محبوبترین‌‌ها1پسندیده شده
  • 1 ارسال‌کننده RM

تاپیک: تابع چیست؟

  1. Top | #1

    • كاربــــر مـــمتـــــاز
    • تاریخ عضویت
      04-Oct-2006
    • پست‌ها
      602
    • سپاس
      0
    • 302 تشکر در 170 پست
    • قدرت امتیاز دهی
      10
    • امتیاز
      24

    لبخند تابع چیست؟

    در ریاضیات ، تابع رابطه‌ای است که رابطه بین اعضای یک مجموعه را با اعضایی از مجموعه‌ای دیگر (شاید یک عضو از مجموعه) را بیان می‌کند. نظریه درباره تابع یک پایه اساسی برای خیلی از شاخه‌های ریاضی به حساب می‌آید. مفاهیم تابع ، نگاشت و تبدیل معمولاً مفاهیم مشابه‌ای هستند. عملکرد ها معمولاً دو به دو بین اعضای تابع وارد عمل می‌شوند.


    تعریف تابع
    در ریاضیات تابع عملکردی است که برای هر ورودی داده شده یک خروجی منحصر بفرد تولید می‌کند معکوس این مطلب را در تعریف تابع بکار نمی‌برند. یعنی در واقع یک تابع می‌تواند برای چند ورودی متمایز خروجیهای یکسان را نیز تولید کند. برای مثال با فرض y=x2 با ورودیهای 5- و 5 خروجی یکسان 25 را خواهیم داشت. در بیان ریاضی تابع رابطه‌ای است که در آن عنصر اول به عنوان ورودی و عنصر دوم به عنوان خروجی تابع جفت شده است.

    به عنوان مثال تابع F(x)=x^2 بیان می‌کند که ارزش تابع برابر است با مربع هر عددی مانند x

    در واقع در ریاضیات رابطه را مجموعه جفتهای مراتب معرفی می‌کنند. با این شرط که هرگاه دو زوج با مولفه‌های اول یکسان در این رابطه موجود باشند آنگاه مولفه‌های دوم آنها نیز یکسان باشد. همچنین در این تعریف خروجی تابع را به عنوان مقدار تابع در آن نقطه می‌نامند. مفهوم تابع اساسی اکثر شاخه‌های ریاضی و علوم محاسباتی می‌باشد. همچنین در حالت کلی لزومی ندارد که ما بتوانیم فرم صریح یک تابع را به صورت جبری آلوگرافیکی و یا هر صورت دیگر نشان دهیم.

    فقط کافیست این مطلب را بدانیم که برای هر ورودی تنها یک خروجی ایجاد می‌شود در چنین حالتی تابع را می‌توان به عنوان یک جعبه سیاه در نظر گرفت که برای هر ورودی یک خروجی تولید می‌کند. همچنین لزومی ندارد که ورودی یک تابع ، عدد و یا مجموعه باشد. یعنی ورودی تابع را می‌توان هر چیزی دلخواه در نظر گرفت البته با توجه به تعریف تابع و این مطلبی است که ریاضیدانان در همه جا از آن بهره می‌برند.

    تاریخچه تابع
    نظریه مدرن توابع ریاضی بوسیله ریاضیدان بزرگ لایب نیتر مطرح شد همچنین نمایش تابع بوسیله نمادهای (y=f(x توسط لئونارد اویلر در قرن 18 اختراع گردید، ولی نظریه ابتدایی توابع به عنوان عملکرهایی که برای هر ورودی یک خروجی تولید کند توسط جوزف فوریه بیان شد. برای مثال در آن زمان فوریه ثابت کرد که هر تابع ریاضی سری فوریه دارد.

    چیزی که ریاضیدانان ما قبل اوبه چنین موردی دست نیافته بودند، البته موضوع مهمی که قابل ذکر است آنست که نظریه توابع تا قبل از بوجود آمدن نظریه مجموعه‌ها در قرن 19 پایه و اساس محکمی نداشت. بیان یک تابع اغلب برای مبتدی‌ها با کمی ابهام همراه است، مثلا برای توابع کلمه x را به عنوان ورودی و y را به عنوان خروجی در نظر می‌گیرند ولی در بعضی جاها y,x را عوض می‌کنند.

    ورودی تابع
    ورودی یک تابع را اغلب بوسیله x نمایش می‌دهند. ولی زمانی که ورودی تابع اعداد صحیح باشد. آنرا با x اگر زمان باشد آنرا با t ، و اگر عدد مختلط باشد آنرا با z نمایش می‌دهند. البته اینها مباحثی هستند که ریاضیدانان برای فهم اینکه تابع بر چه نوع اشیایی اثر می‌کند بکار می‌رود. واژه قدیمی آرگومان قبلا به جای ورودی بکار می‌رفت. همچنین خروجی یک تابع را اغلب با y نمایش می‌دهند در بیشتر موارد به جای f(x) , y گفته می‌شود. به جای خروجی تابع نیز کلمه مقدار تابع بکار می‌رود. خروجی تابع اغلب با y نمایش داده می‌شود. ولی به عنوان مثال زمانی که ورودی تابع اعداد مختلط باشد، خروجی آنرا با "W" نمایش می‌دهیم. (W = f(z

    تعریف روی مجموعه‌ها
    یک تابع رابطه‌ای منحصر به فرد است که یک عضو از مجموعه‌ای را با اعضای مجموعه‌ای دیگر مرتبط می‌کند. تمام روابط موجود بین دو مجموعه نمی‌تواند یک تابع باشد برای روشن شدن موضوع ، مثالهایی در زیر ذکر می‌کنیم:







    این رابطه یک تابع نیست چون در آن عنصر 3، با دو عنصر ارتباط دارد. که این با تعریف تابع متناقص است چون برای یک عنصر از مجموعه، دو عنصر در مجموعه موجود است










    این رابطه یک تابع یک به یک است. چون به ازای هر x یک y وجود دارد.
    تعریف ساخت یافته تابع
    بطور ساخت یافته یک تابع از مجموعه x به مجموعه y بصورت f: x→y نوشته می‌شود و به صورت سه تایی مرتب ( (x,y,G(f) نمایش داده می‌شود. بطوری که (G(f زیر مجموعه‌ای از حاصلضرب کارتزین xy می‌باشد. با این شرط که به ازای هر x در X یک Y متعلق به Y نسبت داد شود. با این شرط زوج مرتب (x,y) را در داخل (G(f می‌پذیریم. در این حالت نیز X را به عنوان دامنه f و y را به عنوان برد fو (G(f را به عنوان نمودار و یا گراف تابع F در نظر می‌گیرند.

    خواص توابع
    توابع می‌توانند:

    زوج یا فرد باشند.
    پیوسته یا ناپیوسته باشند.
    حقیقی یا مختلط باشند.
    اسکالر یا برداری باشند.
    توابع چند متغیره
    یک تابع ممکن است بیشتر از یک متغیر داشته باشد برای مثال( F(x,y,z یک تابع از f است که دارای سه پارامتر x,y,z است که یک ارزش را برای تابع تولید می‌کنند. از توابع چند متغیره می‌توان به قانون جاذبه نیوتن اشاره کرد که در آن دو جرم با متغیر m1,m2 و و نیز یک متغیر rبرای فاصله هر جرم به نام r در آن وجود دارد.





    با مقدار دهی به سه پارامتر فوق مقدار تابع F محاسبه خواهد شد.
    LOVER2010 پسندیده است!
    معانی در کلمات نیست در سکوتی است که بین آنهاست
    کلمات دانسته ها را در برمی گیرند اما
    کیست جزسکوت که سهم مارا از اسرار نادانسته ادا کند

    استاد آقا میری
  2. 3 کاربر از RM برای پست مفید تشکر نموده اند:


  3. Top | #2

    • کاربر ممــــــــتــاز
    • تاریخ عضویت
      15-Mar-2007
    • رشته تحصیلی
      عمران
    • محل سکونت
      ایران
    • پست‌ها
      572
    • سپاس
      1,470
    • 755 تشکر در 305 پست
    • قدرت امتیاز دهی
      9
    • امتیاز
      11

    پیش فرض

    سلام
    خیلی ممنون
    اگه میشه در باره توابع برداری و نگاشتها هم به همین صورت توضیح بدین.

اطلاعات تاپیک

کاربران حاضر در این تاپیک

در حال حاضر 1 کاربر در حال مشاهده این تاپیک هستند. (0 عضو و 1 مهمان)

این مطلب را به اشتراک بگذارید

قوانین ارسال

  • شما نمی‌توانید تاپیک جدید ارسال کنید.
  • شما قادر به ارسال پاسخ نیستید .
  • شما نمی‌توانید فایل ارسال کنید.
  • شما نمی‌توانید پست ‌های خود را ویرایش کنید.
  •  
دانشجو در شبکه های اجتماعی
افتخارات دانشجو
لینک ها
   
سایت برگزیده مردمی در چهارمین و پنجمین جشنواره وب ایران
سایت برگزیده مردمی در چهارمین و پنجمین جشنواره وب ایران
به دانشجو امتیاز دهید:

آپلود مستقیم عکس در آپلودسنتر عکس دانشجو

توجه داشته باشید که عکس ها فقط در سایت دانشجو قابل نمایش می باشند.

Search Engine Friendly URLs by vBSEO 3.6.1